Optimizing Expression of Recombinant HPV16 E6 Mutant (RecmE6) for Cervical Cancer Immunotherapy Development
DOI:
https://doi.org/10.19184/bioedu.v23i2.53716Keywords:
Cervical cancer, HPV-16, Immunotherapy, Oncoprotein E6, Protein expressionAbstract
Cervical cancer ranks as the fourth leading cause of cancer-related death among women worldwide. The disease is primarily associated with Human Papillomavirus (HPV), particularly HPV type 16, which is frequently detected in cervical cancer cases. Immunotherapy has emerged as a promising therapeutic approach that can potentially reduce mortality by harnessing the immune system to target cancer cells. This study aimed to optimize the expression of a recombinant mutant E6 protein from HPV16 (RecmE6) to produce sufficient and high-quality antigen suitable for immunotherapeutic applications. Expression conditions were optimized by varying temperature, isopropyl-β-D-thiogalactopyranoside (IPTG) concentration, and incubation time. The highest yield of RecmE6 was obtained using 1 mM IPTG at 37℃ for 8 hours. SDS-PAGE analysis confirmed successful expression, showing a prominent protein band at approximately 16 kDa. These findings demonstrate that the optimized parameters effectively enhance the expression of RecmE6, supporting its potential use in further development of cervical cancer immunotherapy.
Downloads
References
Basavaraju M, Gunashree BS. Escherichia coli : An Overview of Main Characteristics. In: Starčič Erjavec M, editor. Escherichia coli - Old and New Insights [Internet]. IntechOpen; 2023 [cited 2025 Feb 24]. Available from: https://www.intechopen.com/chapters/84764.
Casali N, Preston A. E. coli Plasmid Vectors: Methods and Applications. Totowa, NJ: Humana Press; 2003. (Methods in Molecular BiologyTM).
Castle PE, Einstein MH, Sahasrabuddhe VV. Cervical cancer prevention and control in women living with human immunodeficiency virus. CA A Cancer J Clinicians. 2021 Nov;71(6):505–26.
Chaberek K, Mrowiec M, Kaczmarek M, Dutsch-Wicherek M. The Creation of the Suppressive Cancer Microenvironment in Patients with HPV-Positive Cervical Cancer. Diagnostics. 2022 Aug 6;12(8):1906.
Erasmus M, Idris OA, Adetunji AI, Cason ED. Biogenic synthesis and characterization of gold nanoparticles using transformed mesophilic Escherichia coli BL21 and thermophilic Thermus thermophilus HB27. Biologia. 2024 Jul 11;79(8):2605–19.
Faust G, Stand A, Weuster‐Botz D. IPTG can replace lactose in auto‐induction media to enhance protein expression in batch‐cultured Escherichia coli. Engineering in Life Sciences. 2015 Nov;15(8):824–9.
Johnson CA, James D, Marzan A, Armaos M. Cervical Cancer: An Overview of Pathophysiology and Management. Seminars in Oncology Nursing. 2019 Apr;35(2):166–74.
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules. 2018 Jan;106:803–22.
Larentis AL, Nicolau JFMQ, Esteves GDS, Vareschini DT, De Almeida FVR, Dos Reis MG, et al. Evaluation of pre-induction temperature, cell growth at induction and IPTG concentration on the expression of a leptospiral protein in E. coli using shaking flasks and microbioreactor. BMC Res Notes. 2014 Dec;7(1):671.
Marlina M, Aldi Y, Putra AE, Sopianti DS, Hari DG, Arfiandi A, et al. Identifikasi Type Human Papillomavirus (HPV) pada Penderita Kanker Serviks. JSainsFarKlin. 2016 Dec 28;3(1):54.
Mutmainnah H, Rijal M. Analisis Kemampuan Akumulasi Polyfosfat pada Tiap Fase Pertumbuhan Isolat Bakteri Toleran Uranium. BS. 2020 May 31;9(1):81.
Nurjayadi M, Chairinnisa II, Mentari GP, Hardianto D, Sulfianti A, Agustini K. Pengaruh Jumlah Inokulum Sel Inang Bakteri E.coli BL21 (DE3) pLysS dan Waktu Overekspresi pada Produksi Protein Rekombinan Fim-C Salmonella typhi. JKV. 2018 Nov 30;4(2):98–106.
Sambrook J, Russell DW. SDS-Polyacrylamide Gel Electrophoresis of Proteins. Cold Spring Harb Protoc. 2006 Sep;2006(4):pdb.prot4540.
Serrano B, Brotons M, Bosch FX, Bruni L. Epidemiology and burden of HPV-related disease. Best Practice & Research Clinical Obstetrics & Gynaecology. 2018 Feb;47:14–26.
Sobhani N, D’Angelo A, Wang X, Young KH, Generali D, Li Y. Mutant p53 as an Antigen in Cancer Immunotherapy. IJMS. 2020 Jun 8;21(11):4087.
Stark H, Živković A. HPV Vaccination: Prevention of Cervical Cancer in Serbia and in Europe. Acta Facultatis Medicae Naissensis. 2018 Mar 1;35(1):5–16.
Stevanović S, Helman SR, Wunderlich JR, Langhan MM, Doran SL, Kwong MLM, et al. A Phase II Study of Tumor-infiltrating Lymphocyte Therapy for Human Papillomavirus–associated Epithelial Cancers. Clinical Cancer Research. 2019 Mar 1;25(5):1486–93.
The International Agency for Research on Cancer (IAFRC). Global Cancer Burden Growing, Amidst Mounting Need for Services. 2024; Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
Wagner DL, Fritsche E, Pulsipher MA, Ahmed N, Hamieh M, Hegde M, et al. Immunogenicity of CAR T cells in cancer therapy. Nat Rev Clin Oncol. 2021 Jun;18(6):379–93.
WHO. WHO, UNFPA mengapresiasi upaya Indonesia mengeliminasi kanker serviks, mendorong strategi vaksin terpadu, dan memperkuat skrining. 2024; Available from: https://www.who.int/indonesia/id/news/detail/15-11-2024-who--unfpa-commend-indonesia-s-efforts-to-eliminate-cervical-cancer--urge-streamlined-vaccine-strategy-and-enhanced-screening
Zanier K, Charbonnier S, Sidi AOMO, McEwen AG, Ferrario MG, Poussin-Courmontagne P, et al. Structural Basis for Hijacking of Cellular LxxLL Motifs by Papillomavirus E6 Oncoproteins. Science. 2013 Feb 8;339(6120):694–8.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Angelique So, Titta Novianti, Adri Nora, Henny Saraswati

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.